3.2.37 \(\int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}} \, dx\) [137]

3.2.37.1 Optimal result
3.2.37.2 Mathematica [A] (verified)
3.2.37.3 Rubi [A] (verified)
3.2.37.4 Maple [A] (verified)
3.2.37.5 Fricas [B] (verification not implemented)
3.2.37.6 Sympy [F]
3.2.37.7 Maxima [B] (verification not implemented)
3.2.37.8 Giac [A] (verification not implemented)
3.2.37.9 Mupad [F(-1)]

3.2.37.1 Optimal result

Integrand size = 36, antiderivative size = 95 \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}} \, dx=-\frac {\tan (e+f x)}{2 f \sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}}-\frac {\text {arctanh}(\cos (e+f x)) \tan (e+f x)}{2 c f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}} \]

output
-1/2*tan(f*x+e)/f/(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2)-1/2*arctan 
h(cos(f*x+e))*tan(f*x+e)/c/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)
 
3.2.37.2 Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.79 \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}} \, dx=-\frac {c \left (\frac {\text {arctanh}(\sec (e+f x))}{2 c^2}+\frac {1}{2 c^2 (1-\sec (e+f x))}\right ) \tan (e+f x)}{f \sqrt {a (1+\sec (e+f x))} \sqrt {c-c \sec (e+f x)}} \]

input
Integrate[Sec[e + f*x]/(Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(3/2 
)),x]
 
output
-((c*(ArcTanh[Sec[e + f*x]]/(2*c^2) + 1/(2*c^2*(1 - Sec[e + f*x])))*Tan[e 
+ f*x])/(f*Sqrt[a*(1 + Sec[e + f*x])]*Sqrt[c - c*Sec[e + f*x]]))
 
3.2.37.3 Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3042, 4448, 3042, 4447, 25, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (e+f x)}{\sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )}{\sqrt {a \csc \left (e+f x+\frac {\pi }{2}\right )+a} \left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4448

\(\displaystyle \frac {\int \frac {\sec (e+f x)}{\sqrt {\sec (e+f x) a+a} \sqrt {c-c \sec (e+f x)}}dx}{2 c}-\frac {\tan (e+f x)}{2 f \sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a} \sqrt {c-c \csc \left (e+f x+\frac {\pi }{2}\right )}}dx}{2 c}-\frac {\tan (e+f x)}{2 f \sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4447

\(\displaystyle -\frac {\tan (e+f x) \int -\csc (e+f x)dx}{2 c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {\tan (e+f x)}{2 f \sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\tan (e+f x) \int \csc (e+f x)dx}{2 c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {\tan (e+f x)}{2 f \sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan (e+f x) \int \csc (e+f x)dx}{2 c \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {\tan (e+f x)}{2 f \sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4257

\(\displaystyle -\frac {\tan (e+f x) \text {arctanh}(\cos (e+f x))}{2 c f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {\tan (e+f x)}{2 f \sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}}\)

input
Int[Sec[e + f*x]/(Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(3/2)),x]
 
output
-1/2*Tan[e + f*x]/(f*Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(3/2)) 
- (ArcTanh[Cos[e + f*x]]*Tan[e + f*x])/(2*c*f*Sqrt[a + a*Sec[e + f*x]]*Sqr 
t[c - c*Sec[e + f*x]])
 

3.2.37.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4447
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(m_), x_Symbol] :> Simp[((-a)*c)^(m + 1 
/2)*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]))   In 
t[Csc[e + f*x]*Cot[e + f*x]^(2*m), x], x] /; FreeQ[{a, b, c, d, e, f}, x] & 
& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m + 1/2]
 

rule 4448
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Simp[b*Cot[e + f*x]* 
(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[ 
(m + n + 1)/(a*(2*m + 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*( 
c + d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c 
 + a*d, 0] && EqQ[a^2 - b^2, 0] && ((ILtQ[m, 0] && ILtQ[n - 1/2, 0]) || (IL 
tQ[m - 1/2, 0] && ILtQ[n - 1/2, 0] && LtQ[m, n]))
 
3.2.37.4 Maple [A] (verified)

Time = 3.59 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.21

method result size
default \(-\frac {\left (2 \cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-2 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-\cos \left (f x +e \right )-1\right ) \sqrt {a \left (\sec \left (f x +e \right )+1\right )}\, \tan \left (f x +e \right )}{4 f a \sqrt {-c \left (\sec \left (f x +e \right )-1\right )}\, c \left (\sec \left (f x +e \right )-1\right ) \left (\cos \left (f x +e \right )+1\right )}\) \(115\)
risch \(\frac {i \left (\ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) {\mathrm e}^{3 i \left (f x +e \right )}-{\mathrm e}^{3 i \left (f x +e \right )} \ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )-{\mathrm e}^{2 i \left (f x +e \right )} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )+{\mathrm e}^{2 i \left (f x +e \right )} \ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )-{\mathrm e}^{i \left (f x +e \right )} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )+{\mathrm e}^{i \left (f x +e \right )} \ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )+2 \,{\mathrm e}^{2 i \left (f x +e \right )}+2 \,{\mathrm e}^{i \left (f x +e \right )}+\ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )-\ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )\right )}{2 c \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, f}\) \(280\)

input
int(sec(f*x+e)/(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x,method=_RET 
URNVERBOSE)
 
output
-1/4/f/a*(2*cos(f*x+e)*ln(-cot(f*x+e)+csc(f*x+e))-2*ln(-cot(f*x+e)+csc(f*x 
+e))-cos(f*x+e)-1)*(a*(sec(f*x+e)+1))^(1/2)/(-c*(sec(f*x+e)-1))^(1/2)/c/(s 
ec(f*x+e)-1)/(cos(f*x+e)+1)*tan(f*x+e)
 
3.2.37.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 169 vs. \(2 (83) = 166\).

Time = 0.34 (sec) , antiderivative size = 382, normalized size of antiderivative = 4.02 \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}} \, dx=\left [-\frac {\sqrt {-a c} {\left (\cos \left (f x + e\right ) - 1\right )} \log \left (-\frac {4 \, {\left (2 \, \sqrt {-a c} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )^{2} + {\left (a c \cos \left (f x + e\right )^{2} + a c\right )} \sin \left (f x + e\right )\right )}}{{\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 2 \, \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{4 \, {\left (a c^{2} f \cos \left (f x + e\right ) - a c^{2} f\right )} \sin \left (f x + e\right )}, \frac {\sqrt {a c} {\left (\cos \left (f x + e\right ) - 1\right )} \arctan \left (\frac {\sqrt {a c} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{a c \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{2 \, {\left (a c^{2} f \cos \left (f x + e\right ) - a c^{2} f\right )} \sin \left (f x + e\right )}\right ] \]

input
integrate(sec(f*x+e)/(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algo 
rithm="fricas")
 
output
[-1/4*(sqrt(-a*c)*(cos(f*x + e) - 1)*log(-4*(2*sqrt(-a*c)*sqrt((a*cos(f*x 
+ e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e))*cos(f*x + 
e)^2 + (a*c*cos(f*x + e)^2 + a*c)*sin(f*x + e))/((cos(f*x + e)^2 - 1)*sin( 
f*x + e)))*sin(f*x + e) - 2*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt(( 
c*cos(f*x + e) - c)/cos(f*x + e))*cos(f*x + e))/((a*c^2*f*cos(f*x + e) - a 
*c^2*f)*sin(f*x + e)), 1/2*(sqrt(a*c)*(cos(f*x + e) - 1)*arctan(sqrt(a*c)* 
sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x 
+ e))/(a*c*sin(f*x + e)))*sin(f*x + e) + sqrt((a*cos(f*x + e) + a)/cos(f*x 
 + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e))*cos(f*x + e))/((a*c^2*f*cos 
(f*x + e) - a*c^2*f)*sin(f*x + e))]
 
3.2.37.6 Sympy [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}} \, dx=\int \frac {\sec {\left (e + f x \right )}}{\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )} \left (- c \left (\sec {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(f*x+e)/(c-c*sec(f*x+e))**(3/2)/(a+a*sec(f*x+e))**(1/2),x)
 
output
Integral(sec(e + f*x)/(sqrt(a*(sec(e + f*x) + 1))*(-c*(sec(e + f*x) - 1))* 
*(3/2)), x)
 
3.2.37.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 406 vs. \(2 (83) = 166\).

Time = 0.38 (sec) , antiderivative size = 406, normalized size of antiderivative = 4.27 \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}} \, dx=\frac {{\left ({\left (2 \, {\left (2 \, \cos \left (f x + e\right ) - 1\right )} \cos \left (2 \, f x + 2 \, e\right ) - \cos \left (2 \, f x + 2 \, e\right )^{2} - 4 \, \cos \left (f x + e\right )^{2} - \sin \left (2 \, f x + 2 \, e\right )^{2} + 4 \, \sin \left (2 \, f x + 2 \, e\right ) \sin \left (f x + e\right ) - 4 \, \sin \left (f x + e\right )^{2} + 4 \, \cos \left (f x + e\right ) - 1\right )} \arctan \left (\sin \left (f x + e\right ), \cos \left (f x + e\right ) + 1\right ) - {\left (2 \, {\left (2 \, \cos \left (f x + e\right ) - 1\right )} \cos \left (2 \, f x + 2 \, e\right ) - \cos \left (2 \, f x + 2 \, e\right )^{2} - 4 \, \cos \left (f x + e\right )^{2} - \sin \left (2 \, f x + 2 \, e\right )^{2} + 4 \, \sin \left (2 \, f x + 2 \, e\right ) \sin \left (f x + e\right ) - 4 \, \sin \left (f x + e\right )^{2} + 4 \, \cos \left (f x + e\right ) - 1\right )} \arctan \left (\sin \left (f x + e\right ), \cos \left (f x + e\right ) - 1\right ) + 2 \, \cos \left (f x + e\right ) \sin \left (2 \, f x + 2 \, e\right ) - 2 \, \cos \left (2 \, f x + 2 \, e\right ) \sin \left (f x + e\right ) - 2 \, \sin \left (f x + e\right )\right )} \sqrt {a} \sqrt {c}}{2 \, {\left (a c^{2} \cos \left (2 \, f x + 2 \, e\right )^{2} + 4 \, a c^{2} \cos \left (f x + e\right )^{2} + a c^{2} \sin \left (2 \, f x + 2 \, e\right )^{2} - 4 \, a c^{2} \sin \left (2 \, f x + 2 \, e\right ) \sin \left (f x + e\right ) + 4 \, a c^{2} \sin \left (f x + e\right )^{2} - 4 \, a c^{2} \cos \left (f x + e\right ) + a c^{2} - 2 \, {\left (2 \, a c^{2} \cos \left (f x + e\right ) - a c^{2}\right )} \cos \left (2 \, f x + 2 \, e\right )\right )} f} \]

input
integrate(sec(f*x+e)/(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algo 
rithm="maxima")
 
output
1/2*((2*(2*cos(f*x + e) - 1)*cos(2*f*x + 2*e) - cos(2*f*x + 2*e)^2 - 4*cos 
(f*x + e)^2 - sin(2*f*x + 2*e)^2 + 4*sin(2*f*x + 2*e)*sin(f*x + e) - 4*sin 
(f*x + e)^2 + 4*cos(f*x + e) - 1)*arctan2(sin(f*x + e), cos(f*x + e) + 1) 
- (2*(2*cos(f*x + e) - 1)*cos(2*f*x + 2*e) - cos(2*f*x + 2*e)^2 - 4*cos(f* 
x + e)^2 - sin(2*f*x + 2*e)^2 + 4*sin(2*f*x + 2*e)*sin(f*x + e) - 4*sin(f* 
x + e)^2 + 4*cos(f*x + e) - 1)*arctan2(sin(f*x + e), cos(f*x + e) - 1) + 2 
*cos(f*x + e)*sin(2*f*x + 2*e) - 2*cos(2*f*x + 2*e)*sin(f*x + e) - 2*sin(f 
*x + e))*sqrt(a)*sqrt(c)/((a*c^2*cos(2*f*x + 2*e)^2 + 4*a*c^2*cos(f*x + e) 
^2 + a*c^2*sin(2*f*x + 2*e)^2 - 4*a*c^2*sin(2*f*x + 2*e)*sin(f*x + e) + 4* 
a*c^2*sin(f*x + e)^2 - 4*a*c^2*cos(f*x + e) + a*c^2 - 2*(2*a*c^2*cos(f*x + 
 e) - a*c^2)*cos(2*f*x + 2*e))*f)
 
3.2.37.8 Giac [A] (verification not implemented)

Time = 1.88 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.97 \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}} \, dx=\frac {\frac {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c}{c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}} - \log \left ({\left | c \right |} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}\right ) + \log \left ({\left | c \right |}\right )}{4 \, \sqrt {-a c} f {\left | c \right |} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \]

input
integrate(sec(f*x+e)/(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algo 
rithm="giac")
 
output
1/4*((c*tan(1/2*f*x + 1/2*e)^2 - c)/(c*tan(1/2*f*x + 1/2*e)^2) - log(abs(c 
)*tan(1/2*f*x + 1/2*e)^2) + log(abs(c)))/(sqrt(-a*c)*f*abs(c)*sgn(tan(1/2* 
f*x + 1/2*e)^3 + tan(1/2*f*x + 1/2*e)))
 
3.2.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}} \, dx=\int \frac {1}{\cos \left (e+f\,x\right )\,\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}\,{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{3/2}} \,d x \]

input
int(1/(cos(e + f*x)*(a + a/cos(e + f*x))^(1/2)*(c - c/cos(e + f*x))^(3/2)) 
,x)
 
output
int(1/(cos(e + f*x)*(a + a/cos(e + f*x))^(1/2)*(c - c/cos(e + f*x))^(3/2)) 
, x)